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Abstract 

It is shown that the motion of a charged particle in a uniform electric field, obeying 
Dirac-Lorentz relativistic equation of motion with radiation reaction, is confined in a 
plane. Further, the component of velocity normal to the lines of force continuously 
decreases to zero. Thus, the motion asymptotically tends to a rectilinear motion along 
the line of force. The motion is completely described up to a correcting factor 

[{ e3F~ 2] e3F 
1 + 0 LIm-~c4] ]; m2c 4~-5.10-~'F 

for electrons, F in volts cm -~. 

1. Introduction 

The problem of relativistic motion of a charged particle in an external 
electromagnetic field taking account of  reaction due to radiation has been 
the object of  investigation since Dirac's (1938) classic paper. Recently, 
there has been a revival of  interest in the problem due to its applications 
in accelerators and in astrophysics. In these cases, the particles encounter 
very intense fields and their energies are also very high so that usual non- 
relativistic approximations are no longer satisfactory. Hence, one is 
obliged to integrate the Dirac-Lorentz  relativistic equation of  motion 
with radiation reaction. 

I t  is well known that the motion of a charged particle in a uniform electric 
field is confined to the plane which contains the initial velocity and the 
lines of  force. This point follows clearly also in case of motion with radiation 
reaction in the non-relativistic approximation (Plass, 1961; Erber, 1961). 
Critical examination reveals that this is also the case with the Dirac-  
Lorentz equation of motion. Hence, the relativistic motion is also in a 
plane. After a preliminary discussion in Section 2 about the nature of  the 
differential equation and the properties of  the solution, we have, in Section 
3, established the result. 

Since the usual perturbation method is not applicable in this highly 
non-linear problem, we develop in Section 2 a suitable approximation 
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method to integrate the equation of motion in the orbital plane. I t  is shown 
there that the components of  the velocity normal to the lines of  forces 
continuously decrease to zero. Hence, the motion asymptotically tends to 
a rectilinear one along the field direction. 

2. The Equation o f  Motion 

The Dirac-Lorentz  relativistic equation of motion, with radiation 
reaction, for a charged particle moving in a uniform electric field of  magni- 
tude F along the direction k, may be written as, 

r162 - E(V - p v )  = g2kE (2.1) 

- , (E  - p E )  = Ok .v  (2.2) 

Dots denote differentiation with respect to proper time r ;  

cv = i', E = i (2.3a) 

and 
p = r -- ~2 (2.3b) 

E is the relativistic energy of the particle in unit of  its rest energy mc 2. 
Further, 

2e 2 eF 
E = 3mc3 , f2 = - -  " (2.4) 

m c  

Before proceeding to integrate equation (2.1), let us make some observa- 
tions which are pertinent to the physical and mathematical nature of  the 
problem. In equation (2.1) there are two parameters, namely ~ and s 
both of them contain e, rn and c. s is inseparable from the incident field. 

is attributed to the radiation reaction and ~ = 0 means that radiation 
reaction is neglected. We are interested in the solutions of  the equation of 
motion which are meaningful as E ~ 0, irrespective of  g2. Hence, we cannot 
impose arbitrary initial acceleration. I t  can be easily verified that the only 
solutions which possess this property are those for which ~(t) as E -+ 0 
at t o is the same as obtained f rom equation (2.1) with E = 0 and given 
initial v(t0) and r(t0). Though our equation of motion is of  third order by 
this prescription, we are still in the realm of Newtonian mechanics, in so 
far as the motion is uniquely determined when initial velocity and accelera- 
tion are known. This is due to the fact that as ~ --> 0, the order of  equation 
(2.1) is reduced. Our procedure is different f rom that of  Bhabha (1946), 
according to which physical solutions are only those which can be continued 
to e ~ 0. In this limit the incident field also disappears and ~(t0)= 0 as 
e ~ 0 which seriously restricts the solutions. I t  must be emphasised that 
by this method one is not seeking a solution for E small, but solutions 
which are regular as E -+ 0. From the viewpoint of  the theory of differential 
equations ~ = 0 is a singular point of  equation (2.1) and we are seeking only 
those solutions which are regular as E ~ 0. The existence of  such solutions 
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specially for linear differential equations have been investigated by Poincar6 
(1895) and recently by Tihonov (1948) and Gradstein (1950). It is relevant 
to mention that according to this prescription the motion in absence of 
external field is with uniform velocity, as self-acceleration no longer appears. 

3. The Orbital Plane 

From equation (2.1)it follows that 

k x v . r 1 6 2  E k x v . V  = 0 

therefore, 
exp ( -r /c)  (k x v. *) = constant (3.1) 

But from equation (2.1) ;r x k  = 0 as E --~ 0, the constant is zero. Thus 

k x v . ~ = 0  (3.2) 

Hence, the motion is confined to the plane which contains the initial 
velocity and the lines of forces, as in the absence of radiation reaction. 
This is also expected from the fact that the radiation emitted by such a 
charged particle is symmetric with respect to the two sides of this plane, 
so that the resultant radiation reaction normal to this plane is zero. It 
follows further that if the initial velocity is along the lines of force the 
motion is along the line of force also. This special case has been discussed 
by Dirac (1938). 

Without any loss of generafity we can take the initial velocity along k 
to be zero; if it is not zero we can pass to the frame in which it is zero and 
the incident field is still purely electric. It may be mentioned that the above 
integral is valid even if F depends on k x r but is along k. The analogous 
integral in the case of motion in a magnetic field is that the velocity along 
the lines of force is constant. 

4. The Motion in the Orbital Plane 

Let jVo e be the initial velocity at t = 0, which by choice of reference 
system is perpendicular to k. The equation of motion may be conveniently 
expressed in terms of 

P+ = E + k . v ,  P _  = E - k . v ~  

and ) (4.1) 
J .V = Va. 

P+ - Eft+ + P+(Ep - g2) = 0 (4.2) 

P_ - ~P_ + P_(~p + ~?) = 0 (4.3) 

fJz - ~iL + epvz = 0 (4.4) 

E . i f 2  . 

P - 2P = 5 (P+ P-  - p -  P+) (4.5) 
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Next, we observe that the characteristic time concomitant to radiation 
reaction is E -  ~ 10 -23 sec, but ~2 which has the dimension of T -1 (electric 
analogue of Larmor frequency) is very small in comparison with e-l. For 
fairly high-intensity field E _ 1 0  6 V cm -1 ~2-~5• 1015 sec -1, so that 
~g2___ 3 • 10 -8. Thus it is quite justifiable to consider E~2 as small and seek 
approximate solutions whose accuracy may be successively increased in 
ascending powers of EQ. 

Since p in equations (4.2) and (4.3) appears with coefficient ~ for the 
first-order term, we can substitute the value o f p  obtained from equation 
(4.5) by putting E = 0. Thus 

p = g22(1 + v• 2) (4.6) 

Further, from equation (4.4) in this order v. is constant and 
1 + V• 2 : EO 2 (4.7) 

On integrating equations (4.2) and (4.3) with p given by equation (4.6) 
one obtainsl" 

P+ -- exp [g(~2) r] Eo, P_ = exp [g(-~) r] Eo (4.8) 

where 

and 

g(g2) = g2(1 - EOEo z) (4.9) 
1 - -  E / 2  

j .  v = exp (-el2 2 Eo 2 r) Vo Eo (4.10) 

This solution may be improved if one starts with the value ofp  obtained 
from equation (4.9). One obtains 

P+=exp[f(fA, r)]Eo, P_=exp[f(-f2, r)]Eo (4.11) 

where 
EoZ{exp [-2E~Q2(Eo z - 1) r] 

f(g2, r) 1 1 g.2[g2r + 2-~o2 7-1) -1}]  (4.12) 

v.  = Vo Eo. exp - [d2 2 Eo 2 r - Vo 2 Eo 2 exp ( - d 2  2 Eo 2 r) sinh d2 2 Eo r] x 
• (1 --  E2 ~Q2 Eo 2) (4.13) 

Hence, it only introduces a correcting factor 1 + 0(e2~Q2), and the first- 
order solution is valid to a very good degree of approximation. It may 
be noted that for EB-- ~ 6 x 109 V cm -1 (which is the field due to the proton 
at the first Bohr radius), ~2Q~2---9 x 10-8; EB is the threshold field for 
quantum effect. 

4.1 The Longitudinal Motion 
From equations (4.8) and (4.9) 

k.v = E0 exp [-eQ2(E02 - 1)r] sinh ~2r (4.1.1) 

E = E 0 exp [-e~22(Eo 2 - 1)r] coshg2r (4.1.2) 

t In order to obtain equations (4.8-4.9), it is assumed that Vo ~ > 1. Otherwise the 
expressions for P .  and v .  become extremely involved. It  may be emphasized that  the 
basic nature of the motion as described subsequently remains the same without this 
approximation. 
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and 

on further integration 
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d 
k.  r = c tanh ~qr (4.1.3) 

pbT~ 
k . r  = 5 ~  exp [-E~Q2(E0 2 - -  1)r] {(coshDr - 1) + ~ ( E o  2 - 1) sinhf2r} 

(4.1.4) 

Eo 2 2 t = ~ e x p [ - ~  (Eo - 1)r] {s inh~r  + d2(Eo = - 1) ( co sh ~ r  - 1)} 

(4.1.5) 

Since rincreases monotonically with t, the longitudinal velocity (d /dt )k .r  
and E monotonically increases and asymptotically tends to c and m, 
respectively. 

4.2 The Transverse Motion 

From equations (4.10) and (4.1.2), the transverse velocity is given by 

d .  
7 ) ' r  = cv o exp( -eQ 2 r) sechg?r (4.2.1) 

and 
VoC 

j . r  --- ~ [1 - exp (-es z E0 2 r)l (4.2.2) 

Hence, the velocity in the transverse direction monotonically decreases to 
zero. After a short interval, ~_Eo/s the transverse velocity is reduced to 
Vo/2 and this interval decreases with increase of field intensity, for F_-_ 1 V 
cm -~, 1/s x 10 -1~ sec. This leads to the conclusion that the motion in 
a field which is not very weak quickly attains its asymptotic property; 
namely, rectilinear motion along the lines of force, so that most of the 
radiation emitted by the particle is at the cost of energy acquired from the 
field. The total displacement in this direction is given by 

Vo (4.2.3) j.r(oo) = eQ 2 Eo 

5. Discussion 

The method of successive approximations followed here is quite different 
from the usual perturbation expansions in ascending powers of e, which 
are valid only for a short interval of time. On the other hand, our expressions 
are valid for all time and are accurate up to a factor of 1 + 0(e2~2). The 
error involved is practically negligible for almost all attainable field in- 
tensities, and the conclusions are valid so long as quantum effects are not 
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introduced. Again, the approximation used is quite different f rom the 
non-relativistic approximation which starts from p = 0. 

Before we conclude, we want to make a few remarks about  the nature 
of  the radiation emitted. Since the acceleration is known, the formal expres- 
sion for the radiation field can be obtained directly. But one notes that, 
due to the similarity of  the expression (4.1.3) with that in non-relativistic 
approximation, the basic nature of  the radiation emitted, which is known, 
remains the same except for small corrections, depending on the parameter  
r 
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